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Executive Summary 

To address the complex and multi-purpose management needs for the Sacramento-San Joaquin 

Delta and Suisun Bay, we present a three-dimensional, mechanistic biogeochemical cycling model 

that includes nitrogen transformation, phytoplankton dynamics, grazing by zooplankton and 

clams, and detrital organic processes. Such a mechanistic model provides a holistic approach to 

quantify the intricate interactions and dependency among the key model variables and can be used 

as a powerful tool to evaluate the system response to management actions and environmental 

conditions. To significantly reduce model computational time, an attribute-dependent model 

aggregation scheme based on an ArcGIS regionalization method was developed. A comparison of 

model results between the high-resolution model (70 000 cells) and an aggregated model (5000 

cells) for nitrogen cycling shows that the aggregated model performed reasonably well in capturing 

the spatial and temporal variability of nitrate and ammonia and only took about 7% of the time 

needed for the full-resolution run. Using the aggregated grid, we further included all other 

biogeochemical processes and performed subsequent model tuning. Using the tuned coefficients 

from the aggregated model, our most recent high-resolution model shows that the modeled 

chlorophyll-a, nitrate and ammonia match reasonably well with the observed spatial and temporal 

variability in these variables. Bivalves (both Potamocorbula and Corbicula) played a central role 

in controlling phytoplankton biomass year round. However, due to the slow response of bivalves 

in growth to food availability, they may not prevent large scale blooms from happening when other 

conditions (such as light availability) support them. The observed level of phytoplankton biomass 

alone as a food source cannot fully support the observed growth in the bivalves. It is strongly 

suggested that other food sources, such as detritus (particulate organic matters) may be important 

in supplementing the food web in the ecosystem.  



II 

Contents 
Executive Summary ......................................................................................................................... I  

1. Introduction ................................................................................................................................. 1  

2. Background ................................................................................................................................. 1  

3. Objective ..................................................................................................................................... 4  

4. Methods....................................................................................................................................... 5  

4.1 Biogeochemical model structure ........................................................................................ 5 

4.1.1 Nutrient cycling ............................................................................................................. 6 

4.1.2 Phytoplankton dynamics ............................................................................................... 7 

4.1.3 The Dynamic Energy Budget (DEB) Model for Clams ............................................... 8 

4.1.4 The Sediment Diagenesis Model ................................................................................ 10 

4.2 Attribute-dependent model aggregation ......................................................................... 10 

4.3 Tuning the Dynamic Energy Budget (DEB) model for benthic grazers ...................... 13 

5. Results and Discussion ............................................................................................................. 16  

6. Future Work: ............................................................................................................................. 20  

References ..................................................................................................................................... 21  

Appendix A The comparison between modeled vs. observed chlorophyll-a, NO3 and NH4 at 

multiple locations across the Delta and Suisun bay. ..................................................................... 24  

Appendix B Comparisons between modeled clam grazing rate and calculated maximum grazing 

rate for multiple locations across the Delta and Suisun Bay. ....................................................... 30 



III 

Figures 

Figure 1 The biogeochemical model structure implemented in DELWAQ ................................... 6 

Figure 2 A schematic diagram of the DEB model illustrating how energy generated from food 

intake is distributed among different compartments of a living organism. The compartments in the 

black boxes (E, V, and R) are model variables for the DEB model. .............................................. 8 

Figure 3  The aggregated grid. Each distinct color represents a different cluster of grids for the 

aggregated grid.............................................................................................................................. 12 

Figure 4 A comparison of modeled NH4 (top) and NO3 (bottom) between the aggregated model 

(left) and full resolution model (middle), and the difference between the two (right). ................ 13 

Figure 5 The initial AFDW biomass for Corbicula and Potamocorbu. ........................................ 16 

Figure 6 Comparisons of model results between scenarios with clams (default) and without clams 

(no clams)...................................................................................................................................... 19 

Figure 7 Comparisons of model results between the default run and the scenario run with increased 

growth rate for a deep (USGS 649 on the left) and a shallow location (D7 on the right). ........... 20 



IV 

Tables 

Table 1 The spatially and temporally averaged condition for both bivalves during the simulation 

period (WY2011). ......................................................................................................................... 14  

Table 2 The derived rates table from the 0D DEB model satisfying the objective and constraints 

for model tuning. ........................................................................................................................... 14  



1 

1. Introduction

The Sacramento-San Joaquin River Delta and Suisun Bay system supports multiple 

important water usage and ecosystem functions. To provide scientific support to meet the nutrient 

management needs of regulators, stakeholders, and the scientific community, we need to 

investigate nutrient-related questions such as the source, present and future levels, spatial 

variability, interaction with phytoplankton and higher trophic levels, drivers and forcings, water 

quality impact, response to climate changes, and response to management actions. Due to the 

intricate inter-dependency of biogeochemical processes, the numerous spatiotemporally-varying 

environmental factors and the multi-purpose management challenges for the system, a process-

based, quantitative, and holistic approach is essentially required to assess the nutrient impact and 

trend for the estuarine-riverine system and to evaluate the impact of management actions to support 

science-based decision making. 

From 2017, we started to develop and apply a three-dimensional biogeochemical model 

for Sacrament-San Joaquin River Delta and Suisun bay. During the first stage of model 

development, we have modeled nitrification and denitrification processes, validated the model 

against the observed dissolved nitrate and ammonia, and developed proof-of-concept approaches 

to address management questions. This report describes progresses during the second-phase of 

model development and is outlined as follows: 

● Background – Section 2

● Objectives – Section 3

● Methods – Section 4

● Results and Discussion – Section 5

● Future work – Section 6

2. Background

Nutrients and phytoplankton undergo complex biogeochemical transformations (SFEI, 

2014) as they are transported, mixed, and dispersed through the Delta and Suisun Bay. The rates 

of these transformations can be strongly influenced by physical, hydrological, atmospheric and 

biological conditions, such as bathymetry, river discharge, light availability, winds, tides, surface 
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waves, turbidity, water temperature, salinity, primary production and higher trophic levels, which 

can all vary greatly in space and time. Thus, nutrient concentrations, including relative abundance 

of different forms (e.g., ammonium vs. nitrate), and indicators of response (e.g., phytoplankton 

biomass) exhibit strong spatial, seasonal, and inter-annual variability (e.g., Jassby, 2008; SFEI, 

2015). In addition, major changes in some important forcings have occurred in the Delta and 

Suisun Bay over the past ~40 years, resulting in sudden shifts or gradual changes in the balance 

among ecosystem processes. The invasion of Potamocorbula amurensis around 1987 resulted in 

an abrupt drop in phytoplankton production and biomass in Suisun Bay and the western Delta 

(Cloern and Jassby, 2012; Cloern, 2018; Jassby, 2008). In addition, there is anecdotal evidence 

that abundances of Potamocorbula (the salty-region invasive clam) decreased substantially in 

Suisun after WY2017’s extremely wet winter and spring, which could again alter the balance of 

important processes. Recent analyses (Cloern and Jassby, 2012; Schoellhamer, 2011) found that 

suspended sediment concentrations in Suisun Bay have decreased by ~50% since 1975, meaning 

that light levels available to support phytoplankton growth have essentially doubled. In addition, 

Regional San’s 2010 National Pollution Discharge Elimination System (NPDES) permit sets May 

2021 as the operational date for an upgrade to an ammonia limit of 1.7 mg-N/L (April-October) 

and 3 mg-N/L (November-March), and sets an interim ammonia limit of 47 mg-N/L year-round 

prior to the completion of the upgrade (NPDES Permit, 2010). Relative to the typical performance 

of the current treatment plant, the upgrade is anticipated to result in a >95% reduction in effluent 

dissolved ammonia concentration and a >65% reduction in effluent total inorganic nitrogen 

concentration (pers. comm., Lisa Thompson, Regional San). All these changes may influence 

primary production, phytoplankton biomass, and nutrient concentration in the system. 

Among various biogeochemical processes, clam grazing has been hypothesized to be the 

cause of the observed abrupt drop in phytoplankton biomass in 1987 in the system (Cloern, 2018; 

Jassby, 2008). The presence of immobile Potamocorbula and Corbicula at the bottom imposes a 

‘toll’ on phytoplankton biomass in the water column, which leads to a reduction of zooplankton 

and food supply to native fish. The grazing rate of bivalves is highly dependent on the physical, 

atmospheric and biological conditions of the system. Since bivalves graze at the bottom while 

phytoplankton typically concentrates at the surface, their grazing rate can become limited by the 

rate of food delivered to clams by turbulent mixing. During stratifying seasons, phytoplankton may 

become out of reach for the clams and thus result in starvation of clams even when primary 
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production and zooplankton grazing is strong. Clams generally do not respond as fast to food 

sources as zooplankton, so they can survive for longer period without food and are ready to take 

advantage of higher productivity before a bloom event. Clams can graze not only on 

phytoplankton, but also on detritus and zooplankton (Crauder et al., 2016; Kimmerer et al., 1994). 

Lastly, the grazing rate of clams can vary greatly in space and time; generally, small newly settled 

clams have much higher growth rate per biomass compared to larger mature clams.  

The process-based, spatially-explicit, coupled physical-biogeochemical model has been 

recognized by a broader scientific and management committee as an essential tool to provide 

science-based decision making for nutrient management in the Delta system. In a recent “Model 

Steps and Scenarios” report, we detailed the role of the model in the broader context of 

management needs, the model steps and efforts required to develop a fully calibrated regional 

biogeochemical model, the model scenarios we can run to answer management questions, and how 

confident we are about the ability of the model to answer these questions at each model 

developmental stage. To make sure that the model development plan proposed is in line with the 

management needs of the system, we proposed five consecutive model development steps. A 

summary of each step is listed below.  

● Step 1 (mid-2017 to mid-2019): Customize a biogeochemical model that includes all major

drivers, substances, and processes for the system for a typical non-bloom year (WY2011).

The high-nutrient and low-chlorophyll condition for the chosen year is the most

representative condition for the estuarine-riverine system. When this step is accomplished,

we would anticipate that, to the best of our knowledge, the model has all the components

needed to capture the biogeochemical processes in the system and the model should be able

to produce a generally non-bloom condition in the Delta.

● Step 2 (mid-2019 to mid-2020): In this second step of model development, we targeted at

resolving drastically different modeling responses of phytoplankton dynamics during two

different water years (WY2011 and WY2016): one with non-bloom and the other with

bloom conditions. This would be a good starting point to assess the robustness of the model

structure and parameters.

● Step3 (mid-2020 to mid-2021): During this step, more effort will be focused on resolving

the timing, amplitude, and duration of the bloom events in WY2016. We will also use the

opportunity to tune rates and parameters related to dissolved oxygen (DO), where greater
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fluctuations in DO are expected when system production and respiration activities are 

strong. We expect to obtain a set of parameters that are system-wide optimized, which will 

improve our confidence about the ability of the model to quantify the linkages between the 

drivers and modeling targets or management needs.  

● Step 4 (mid-2021 to mid-2022): At this stage of model development, the major effort will

be to reconcile the spatial discrepancy between the model results and observations. Spatial

variability in various environmental drivers will first be interpolated from the best-

available measurement data across the Delta to each computational cell and then used to

drive the model. We expect that, by improving the initial and boundary conditions of the

key drivers, we will be able to improve the capability of the model to simulate the spatial

variability of key modeled variables.

● Step 5 (from mid-2022): Revise the model structure and parameters as needed and address

the data gap issue.

Up until now, we are already 1.5 years into the first step and another half a year will be required 

to accomplish this step. In this report we will detail the substantial effort we made in developing 

and validating the biogeochemical model for WY2011.  

3. Objective

The objective of this project is to develop and calibrate a three-dimensional finite-volume 

biogeochemical model (DELWAQ) offline coupled to an unstructured-grid hydrodynamic model 

(Dflow3D-FM) for WY 2011 in the Delta and Suisun Bay. The biogeochemical processes should 

include nitrogen cycling, phytoplankton dynamics, benthic and pelagic grazing, detrital organic 

respiration/mineralization, and a sediment diagenesis model. The model results will be calibrated 

against key measured variables, including nitrogen, chlorophyll-a and clam biomass across the 

Delta and Suisun Bay.  
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4. Methods

In this section, we will first demonstrate the biogeochemical model structure, the key 

modules we have turned on, the limitation of the chosen modeling processes, and the major 

uncertainties; we will then introduce a new attribute-based model aggregation method, which 

significantly reduces the runtime needed for the model and greatly improves the efficiency of 

parameter tuning; lastly, using the tuned coefficients from the aggregated model, we present 

comparisons between the modeling results and observations.  

4.1 Biogeochemical model structure 

We used a process-based, spatially-explicit, coupled hydrodynamic-biogeochemical modelling 

approach to model water quality in the Delta/Suisun Bay. We selected the Deltares Flexible Mesh 

(DFM) model and the Deltares Water Quality model (DELWAQ) as our primary platforms for 

coupled hydrodynamic and biogeochemical modeling for WY2011. Working in the DFM-

DELWAQ platform for this project also allowed us to build upon the existing multi-year 

CASCaDE project1, where extensive effort has been invested into the hydrodynamic calibration 

for Suisun Bay and the Delta for WY2011 and WY2012. Going forward, it is possible to take 

advantage of other existing hydrodynamic models in the system and couple them offline with 

DELWAQ, but substantial effort in developing a connector from other modeling platforms to 

1  USGS-led project, partially funded by the Delta Science Program. Collaborators: Deltares, 
UNESCO-IHE, and SFEI. 
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DELWAQ will be required. The model structure for the full biogeochemical cycling process is 

illustrated in the following diagram (Figure 1) and explained in detail below. 

Figure 1 The biogeochemical model structure implemented in DELWAQ 

4.1.1 Nutrient cycling 

We modeled nitrogen transformation processes including nitrification, denitrification, uptake by 

phytoplankton, and remineralization by detritus. Nitrification is the oxidation of ammonium (NH4) 

to nitrate (NO3) which is carried out by specialized bacteria and archaea, and this is an autotrophic 

process (produces energy) requires oxic condition. Denitrification is carried out by facultative 

anaerobes, in which bioavailable nitrate (NO3) is converted to nitrogen gas (N2) through a 

multistep process and released to the atmosphere, and this is a heterotrophic process that requires 

anoxic conditions. In the water column, both nitrification and denitrification contribute to nitrogen 

transformations, but denitrification is generally expected to occur mainly in the surficial layers of 

bed sediments due to the generally oxygen-rich condition in the water column for our system; 

however, some denitrification may also occur within anoxic microzones associated with suspended 

particulate matter in the water column.  
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Nitrification rate is modeled as a first-order rate depending on ammonia concentration, dissolved 

oxygen concentration and temperature, whereas sediment denitrification rate is only dependent on 

temperature and local depth (SFEI, 2018). The first order denitrification rate can also be replaced 

with a complex sediment diagenesis model, which we made possible as described in detail in 

section 4.1.4. Although the current DELWAQ model has the capability to model the sediment 

diagenesis process, it is not routinely turned on during the model tuning phase due to the limited 

data available to calibrate the process, the long computational time it incurs, and the small 

difference it makes in the modeling results.  

4.1.2 Phytoplankton dynamics 

The rate of change in phytoplankton biomass is determined by transport, growth rate, mortality 

rate, and respiration rate of phytoplankton. Phytoplankton growth (or the synthesis process) is 

modeled as a function of nutrient concentrations, light availability, and temperature. Both nutrient 

and light availability can limit phytoplankton growth. The mortality rate includes death via natural 

mortality and grazing by primary consumers, including zooplankton and clams. Detritus or 

particulate organic matter is released from algal predation, algal and zooplankton metabolism 

(death, maintenance, and faeces). The detritus both within the water column and in the sediment 

surface can be food sources for zooplankton, although zooplankton in the Delta tend to 

preferentially graze on phytoplankton and is mainly food-limited by phytoplankton in the system 

(Orsi and Mecum, 1986; Sobczak et al., 2005).  The non-living organic matter is comprised of 

DOM (dissolved organic matter, C, N, P or S) and POM (particulate organic matter). POM will 

first be converted to DOM through hydrolysis before it can be mineralized. POM can also sink to 

the bottom and be grazed by bivalves or go through diagenesis in the sediment layers and return 

to the water column as DOM or DIM (dissolved inorganic matter, such as DIN). The sinking and 

resuspension of POM is governed by bottom shear stress, which is determined by bottom 

roughness and a combination of benthic unidirectional flow and wave-driven oscillatory flow. 

Both mineralization and diagenesis are a function of temperature and proportional to organic 

matter concentrations. 
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4.1.3 The Dynamic Energy Budget (DEB) Model for Clams 

Based on the first principles of thermodynamics, the Dynamic Energy Budget model developed 

by Kooijman (2000) describes physiological processes individual organism or communities 

experience during their life cycles. Specifically, these processes include food ingestion, defecation, 

energy assimilation, storage or reserve dynamics, utilization, growth, maintenance, maturing, 

reproduction, and spawning (Troost, 2009).  A simplified diagram illustrating key processes and 

model variables for the DEB model is presented in Figure 2.  

Figure 2 A schematic diagram of the DEB model illustrating how energy generated from food 
intake is distributed among different compartments of a living organism. The compartments in the 
black boxes (E, V, and R) are model variables for the DEB model.  

We chose to apply a food-dependent dynamic grazing model rather than imposing predefined 

benthic grazing rates for the following reasons: 

 The spatial coverage of the observed clam data for WY2011 is very limited. Using a

dynamic model is the best way to minimize errors associated with spatially interpolating

clam biomass from a limited number of observational sites, since the modeled clam
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biomass will automatically adjust to local food availability and hopefully approach more 

realistic spatial distribution during the simulation.  

 There could be large errors associated with the observed clam biomass. Clam biomass

measured at one location may not be representative for the local community.

 Clams themselves can be nutrient sinks/sources.

Compared to a simple first-order grazing rate model, DEB model can more realistically describe 

the growth or mortality curves of the grazers for the following reasons:  

 The DEB model includes an energy reserve term: when food is available, energy is stored

in the reserve, which can be used to sustain the metabolism and even growth of clams when

food becomes scarce, so the organism can survive longer period of starvation.

 The DEB model has a unique model structure, where the energy assimilation rate (from

food) scales linearly with the surface area to volume (and thus biomass) ratio, which

decreases as the organism gets bigger. Newly settled clams can grow much faster than older

established clams. When an organism reaches its maximum size, energy intake exactly

equals maintenance cost and the organism stops growing. This model structure imposes

additional constraints on clam growth rate and the percentage of food can be used to

support growth during the entire life cycle of clams, so we would not accidently apply an

unrealistic growth rate for the purpose of matching with the observational data.

The DEB model can be run in three modes in DELWAQ: isomorph, V1-morph, and mixed 

approach. Isomorph is used to model an individual organism or a cohort of organisms at similar 

life stage, and the size of the bivalves responds to food availability. V1-morph is used to model a 

community of organisms with different sizes; the community-averaged size of the organisms does 

not change over time but the density or biomass of the community changes with food availability. 

A mixed approach models a baseline stable community using V1-morph and known seasonal 

recruitment of newly settled clams using isomorph. The mixed approach is the most realistic mode 

for the DEB model, however it is more complex in model structure and requires more observational 

data (such as recruitment) to set up. In this study, we chose to apply the V1-morph mode to assess 

if this simplified approach is good enough in capturing the observed clam grazing dynamics in the 

system.    
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4.1.4 The Sediment Diagenesis Model 

Sediment is composed of inorganic matter, detritus (POM), and algae. At this stage, only detritus 

is modeled in the sediment model. POM in the sediment is divided into labile (DetX) and refractory 

(OOX) substances. When POM in the water column sinks to the bottom, it becomes DetX. The 

sediment diagenesis model includes two layers of sediment: S1 and S2. S1 can be partially enriched 

with DO (aerobic), but S2 is depleted of DO (anaerobic). We assumed that the sediment had fixed 

porosities and fixed layer thicknesses, so all advection processes related to flow through the 

sediment-water interface (i.e., seepage) that affect the benthic geometry and porosity were turned 

off. One reason we decided to make these assumptions was that we had very little knowledge of 

parameters needed to model the impact of suspended sediment on the morphology of the sediment 

layers. However, what we were trying to model were the concentrations of substances in the 

sediment (organic matter composition) and their exchanges with the water column. Dispersion of 

dissolved substances (bio-irrigation) causes transport fluxes of dissolved matters across the 

sediment-water interface. These fluxes include the so-called return fluxes of nutrients to the water 

column and the sediment oxygen consumption flux. We also turned on bioturbation to represent 

dispersion of particulate matters between the sediment layers and water column.  

4.2 Attribute-dependent model aggregation 

The motivation for developing an aggregated model is to significantly reduce the run time required 

by the biogeochemical model. DELWAQ is coupled with the hydrodynamic models offline. The 

offline coupling feature allows DELWAQ to be driven by velocity and eddy viscosity fields 

supplied by other hydrodynamic models, including both Deltares models and non-Delatres models, 

and saves computational time because hydrodynamic runs do not need to be during the model 

tuning stage for the water quality model. However, parallel computing is not enabled for 

DELWAQ, so the model runtime can be long when the number of variables is large. When the 

complete set of biogeochemical processes is included in the current project, the estimated runtime 

for one water year can range from 14 to 30 days, which makes model tuning extremely slow. 

Developing a tool that automatically lower the grid resolution to significantly reduce the runtime 

is a common goal for SFEI and DELWAQ developers. A desirable algorithm for model 

aggregation should 1) preserve as much as possible the spatial variance of variables modeled by 

the full resolution grid; 2) be automatic; 3) prevent aggregation across control structures, such as 
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levees. We chose to use the spatially constrained multivariate clustering tool provided by ArcGIS 

pro Mapping Clusters Toolset. The attributes we included were water depth, NO3, and NH4. At 

this stage, we only included representative snapshots of NO3 and NH4 but it is possible to include 

the entire time series of these variables. The clustering algorithm by ArcGIS pro produced 

polygons with holes and a simple python algorithm was developed to separate those polygons into 

a minimum number of polygons without holes. The python scripts for both model aggregation and 

post processing can be found in github repository: 

https://github.com/ZhenlinZh/delwaqAggregation.git and the aggregated grid generated is shown 

in Figure 3. 
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Figure 3  The aggregated grid. Each distinctly colored polygon represents a different cluster of 
grid cells for the aggregated grid.  

The effectiveness of the aggregated model to capture the spatial variability of NO3 and NH4 was 

tested by running DELWAQ with the aggregated grid. The modeled results show that at least 

within the Delta-Suisun region, the differences between the aggregated model and the full 

resolution model are small and localized (Figure 4).  
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Figure 4 A comparison of modeled NH4 (top) and NO3 (bottom) between the aggregated model 
(left) and full resolution model (middle), and the difference between the two (right). 

4.3 Tuning the Dynamic Energy Budget (DEB) model for benthic grazers 

The DEB model was applied to both Portacorbicula and Corbicula for the Delta-Suisun system. 

To come up with an initial set of parameters for the model, we first translated a zero-dimensional 

(0D) DEB model from the DELWAQ source code (in FORTRAN) to PYTHON; we then gathered 

the community-averaged condition from the measurements for both clams for WY2011 (see Table 
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1); thirdly, we fed the clams with an ambient chlorophyll-a level of 3 g/l and tuned the 0D DEB 

model until the modeled biomass reached steady-state. At least by examining the observational 

data, an ambient chlorophyll-a of 3 g/l seems to be the cut-off value, above which, clam biomass 

increases and below which, it declines. The major tunable parameters are reference length, 

mortality rate, ingestion efficiency, and half-saturation; all the other parameters should not be 

changed unless lab measurement for the clams becomes available. To tune the 0D DEB model, we 

need to satisfy: 1) the clam grazing rate at steady state needs to match with the magnitude of the 

grazing rate estimated from the measured bivalve biomass; 2) the pumping rate of corbicula is 

about 4 times that of Potamocorbula. An initial set of parameters that satisfies the above objectives 

and constraints are listed in Table 2.  

Table 1 The spatially and temporally averaged condition for both bivalves during the simulation 
period (WY2011). 

Bivalves Biomass 
in AFDW 
(g/m2) 

Grazing 
rate in 
per day 

Grazing 
rate in 
m/day 

Density 
(# per 
m2) 

Mean 
length 
(cm) 

Adult 
length 
(cm) 

Filtration rate 
(L water per 
10 g tissues 
per day at 20 
℃)2 

Corbicula 13 0.2 0.88 900 1.79 2 to 3 1000 

Potamocorbula 7.3 0.55 2.1 2573 1.03 2.5 4000 

Table 2 The derived rates table from the 0D DEB model satisfying the objective and constraints 
for model tuning. 

Bivalves Individual 
volume (cm3) 

Length 
(cm) 

Maximum 
ingestion rate 
(J/cm2/d) 

Basal 
respiration rate 
(J/d) 

Reference 
mortality rate ( 
per day) 

Corbicula 0.11 1.79 40 4 0.00055 

2 From Cole et al. 1992, the filtration rate or pumping rate (l/g/day) for Potamocorbula (with 
multi-size 5.5 to 20.5mm shell length), is defined as dx*V/B. dx is phytoplankton loss rate in per 
day, and V is the volume of water in the flume, and B is bivalve AFDW. If we time filtration rate 
with chl-a, we will obtain the grazing rate in gChl-a/g AFDW/day). And the filtration rate is 
sensitive to flow. 
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Potamocorbula 0.02 1.03 128 50 0.00055 

The initial condition of bivalve biomass was spatially interpolated from the observed ash-free dry 

weight (AFDW) biomass values using the inverse distance weighting method and assuming an 

AFDW:C ratio of 0.4. The spatial maps used as model initial condition are shown in Figure 5.   
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Figure 5 The initial AFDW biomass for Corbicula and Potamocorbu. 

5. Results and Discussion

The modeled time series of Chlorophyll-a, NO3, and NH4 are presented for various stations in 

Appendix A. Our model is doing a reasonable job in capturing the spatial and temporal variations 

in all these variables at most of the stations presented. For chlorophyll-a, only at a few stations and 

on selected days does our model deviate considerably from the observations (for instance, MD10A 

in Feb 2011, D41 in March, and P8). These stations have drastically different flow regimes 

compared to the central Delta and using a spatially homogeneous light extinction coefficient based 

on the observed turbidity at one central Delta location (at Mallard Island) is mostly likely what 

contributed to the modeled discrepancy for these stations. The potential error associated with the 

spatial interpolation of initial clam biomass could be another important source of error. Given all 

these known issues, our model was still capable of modeling a general non-blooming condition 

that captured both the spatial and temporal patterns of the observed nutrients and phytoplankton 

biomass in the Delta.  

Although modeling clam biomass is not the focus of the current project, it is still helpful for us to 

check and make sure that the grazing pressure imposed on phytoplankton was reasonable in our 
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model. Comparisons between the modeled and observed bivalve biomass for both Corbicula and 

Potamocorbula are presented in Appendix B. The modeled results show that our model correctly 

captured the baseline magnitudes of the biomass and some seasonality. The short-term variations 

(those peaks in the observed AFDW of clams that start and end within less than 2 months) cannot 

be captured by the current mode of the DEB model. This may be because:  

1) Such short-term variations may not be real. The observed clam biomass from the sampling

location may not be representative of the spatially averaged biomass for the local

community; and the error bar (or variance) associated with the observations is unknown

but can potentially be large.

2) The occurrence of these peaks could have been associated with the recruitment of newly

settled clams, who grew much faster than the community-averaged clams, due to their

much smaller size. Because we assumed a V1-morph model with a constant community-

averaged organism length, recent recruitment of a large number of newly settled clams

cannot be modeled. This may explain some of the short-term variations in the observed

biomass, such as at D7 and D28, that we failed to capture.

However, what we hope to improve is the under prediction of clam biomass during the summer of 

2011 that was consistently observed at multiple locations (e.g., D4, D24, C9, and D6). To improve 

the prediction, more food needs to be channeled to supply the growth of the clams during the 

period. There are potentially two approaches we can try to achieve this: 

1) Including clam grazing on other unbudgeted food sources: terrestrial allochthonous organic

matter and zooplankton. In the most recent model run, we turned on grazing on detritus by

clams, which helped deliver more food to the clams and improved the modeled clam

biomass. Without grazing on detritus, the model clam biomass will slowly decline and

diverge from the reality. This suggests that food sources other than phytoplankton,

particularly detritus, are required to maintain the observed growth rate of both clams during

WY2011. However, in our model, detritus only originates from recently dead

phytoplankton and zooplankton. Allochthonous particulate organic matter from river

inflow, irrigation outflow, ponds and floodplains has not been included in the model and

may be a cause of the underestimation of clam biomass.

2) We need to make sure that vertical mixing is properly modeled by the hydrodynamic

model (CASCaDE project). A comparison between the wind fields used by the CASCaDE
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project and those measured show that the former was generally lower than the 

observational values in the Delta (King, 2019); wind-induced surface waves are also not 

included in the current version of the hydrodynamic model. Both will result in less 

turbulent mixing and lead to less food delivered to the clams.  

Using the calibrated biogeochemical model, we performed two hypothetical scenario runs: 1) 

removing clams and 2) increasing phytoplankton growth rate by 25%. The motivation to perform 

the first scenario is that it is hypothesized that the introduction of the invasive clam 

(Potomocorbula) caused the shift from high bloom to low phytoplankton biomass conditions for 

the system in 1986. The second scenario represents the condition where either solar radiation 

increases or turbidity decreases (or some combination of the two) by 25%. Giving that the turbidity 

in the system has declined by 50% from the 1980s to 2010 (Cloern and Jassby, 2012), a further 

decrease of 25% could be within the possible range of scenarios for the next two decades. The 

model results at D7 show that, when clams are removed, phytoplankton biomass reaches 30 g/l 

and the biggest differences between the runs with and without clams occur during the warmer 

months of the year (from May to Oct; see Figure 6). These model results agree very well with 

historical observations of the change in phytoplankton biomass and in the months where the largest 

difference at this station between pre- and post-bloom conditions were observed (Figure 3 and 6 

in Cloern, 2018). This finding suggests that our model correctly captured the dynamics of clam 

grazing for the system. It is also interesting to notice that, for the no-clam run, DIN was 

substantially lower than the scenario with the clams during the phytoplankton bloom event and the 

phytoplankton growth rate was strongly nutrient limited (shown by nutrient limitation factor, 

which indicates no nutrient limitation when it is equal to 1 and extreme limitation when it is equal 

to 0).  

The presence of the bivalves indeed effectively reduced phytoplankton blooms, 

particularly during the warmer months of the year. However, can the clams prevent any blooms 

from happening in the system? The second scenario run with increased growth rate showed that 

even with the presence of clams, phytoplankton blooms can still occur when other conditions 

support them. Moreover, extreme nutrient limitations are observed at both a shallow (D7) and a 

deep (USGS 649) stations during the bloom event (Figure 7).  
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The fact that nutrient limitations are observed either when clams are removed or when 

phytoplankton growth rate is increased at multiple locations emphasizes that nutrient source 

control (such as the Sac Regional upgrade) is likely to be effective in reducing phytoplankton 

biomass and productivity for the ecosystem.  

Figure 6 Comparisons of model results between scenarios with clams (default) and without 
clams (no clams). 



20 

Figure 7 Comparisons of model results between the default run and the scenario run with increased 
growth rate for a deep (USGS 649 on the left) and a shallow location (D7 on the right). 

6. Future Work:

Further improvement of the model requires implementing better spatial variations of 

environmental forcing conditions, including light extinction coefficient and clam initial biomass. 

The robustness of the model will also be tested for a different water year (WY2016), where 

phytoplankton bloom events were observed. The discrepancy between the modeled and observed 

clam biomass may need additional parameter tuning. The demonstrated importance of turbulent 

mixing in delivering phytoplankton to the benthic grazers requires rigorous model validation for 

vertical mixing processes by the hydrodynamic model and accurate atmospheric forcing data that 

drives it. Further improving the model may also require collecting additional data to 1) generate 

higher spatial resolution input for clam biomass for regions of particular interest; 2) evaluate the 

influence of terrestrial allochthonous particulate organic matter; 3) validate hydrodynamic model 

with observed vertical profiles of flow, temperature and salinity.  
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Appendix A The comparison between modeled vs. 

observed chlorophyll-a, NO3 and NH4 at multiple 

locations across the Delta and Suisun bay. 

In the following figures, the dots represent measurements and gray lines represents the modeling 

results.  
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Appendix B Comparisons between modeled clam grazing 

rate and calculated maximum grazing rate for multiple 

locations across the Delta and Suisun Bay. 
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